1. **情境敏感的预测编码**
大脑通过β频段(13-30Hz)的振荡活动构建动态预测模型,在动作执行前400-600毫秒即可通过前额叶-顶叶网络预激活相关肌肉群的运动模式。这种预测编码不仅整合视觉线索,还融合本体感"/>

通过跨学科的合作与交流,我们能够突破传统思维的边界,开拓新的研究领域。

——院长致词

首页 > 科学研究 > 基础科学

人脑中的可供性(affordances)感知机制展现了远超当前AI能力的生物智能特性,这种能力源于神经系统与环境动态交互的多层级整合。以下是该领域的关键洞察:### 一、人脑可供性感知的核心机制1.

本站发布时间:2025-07-03 20:30:36
注:部分名称可能翻译不全,如有问题可联系15163559288@163.com

当我们看到陌生环境的图像——山间小径、繁忙街道或河流时,能立即判断出行进方式:步行、骑行、泅渡或止步。这看似简单,但大脑如何实现这种行动可能性评估?

博士生Clemens Bartnik与团队通过独特脑活动模式揭示了人类行动预测机制。由计算神经科学家Iris Groen领导的团队还将这种能力与包括ChatGPT在内的多种AI模型进行对比。Groen总结道:"AI模型在此方面表现欠佳,仍需向高效人脑学习。"

磁共振成像观测

研究团队利用MRI扫描仪观测受试者观看室内外场景图像时的脑活动。受试者通过按键判断画面诱发的行动意向:行走、骑行、驾驶、游泳、划船或攀爬。

Groen解释:"我们试图确认:场景认知是单纯识别物体颜色,还是自动关联行为可能。心理学称后者为'可供性'——如可攀登的阶梯或可奔跑的旷野。"

独特的脑神经活动

研究发现视觉皮层的特定区域激活模式无法用画面可视元素解释。Groen指出:"这种神经表征具有唯一性——不仅编码视觉信息,更整合行动可能。"即便未获明确指令,大脑仍自发处理此类信息。"说明动作可能性是自动加工的,"Groen补充,"即便无意识思考环境交互,大脑仍持续记录可供性。"

 

该研究首次实证"可供性"不仅是心理学概念,更是可测量的脑神经特征。

AI的认知局限

团队对比多种AI算法(包括图像识别模型和GPT-4)的环境行动预测能力,发现其表现逊于人类。Groen说明:"经过专项训练的模型能部分逼近人类判断,但其内部计算与人脑模式存在本质差异。"

"即便是顶尖AI模型也难以复现人类的本能判断,"Groen强调,"这说明人类视觉与物理世界的具身经验深度融合。AI缺乏实体存在,无法建立感知与经验的本质联系。"

人脑对AI的启示

研究触及可信AI发展的核心议题。Groen阐述:"随着医疗到机器人等领域广泛应用,AI需超越物体识别,实现功能理解。例如灾后搜救机器人需辨识可行路径,自动驾驶需区分自行车道与行车道。"

Groen同时指出AI可持续发展方向:"当前训练方法能耗巨大且受限于科技巨头。深入解析人脑高效处理机制,将助推AI向智能化、节能化和人性化演进。"

Story Source:

Materialsprovided byUniversiteit van Amsterdam.Note: Content may be edited for style and length.

Journal Reference:

Clemens G. Bartnik, Christina Sartzetaki, Abel Puigseslloses Sanchez, Elijah Molenkamp, Steven Bommer, Nikolina Vukšić, Iris I. A. Groen.Representation of locomotive action affordances in human behavior, brains, and deep neural networks.Proceedings of the National Academy of Sciences, 2025; 122 (24) DOI:10.1073/pnas.2414005122

排行榜

备案号:京ICP备2023036195号-1

地址:北京市丰台区南三环西路16号2号楼

地址:山东省济南市历城区唐冶绿地汇中心36号楼

电话: 400-635-0567

北前院微信公众号